976 research outputs found

    EviPlant: An efficient digital forensic challenge creation, manipulation and distribution solution

    Full text link
    Education and training in digital forensics requires a variety of suitable challenge corpora containing realistic features including regular wear-and-tear, background noise, and the actual digital traces to be discovered during investigation. Typically, the creation of these challenges requires overly arduous effort on the part of the educator to ensure their viability. Once created, the challenge image needs to be stored and distributed to a class for practical training. This storage and distribution step requires significant time and resources and may not even be possible in an online/distance learning scenario due to the data sizes involved. As part of this paper, we introduce a more capable methodology and system as an alternative to current approaches. EviPlant is a system designed for the efficient creation, manipulation, storage and distribution of challenges for digital forensics education and training. The system relies on the initial distribution of base disk images, i.e., images containing solely base operating systems. In order to create challenges for students, educators can boot the base system, emulate the desired activity and perform a "diffing" of resultant image and the base image. This diffing process extracts the modified artefacts and associated metadata and stores them in an "evidence package". Evidence packages can be created for different personae, different wear-and-tear, different emulated crimes, etc., and multiple evidence packages can be distributed to students and integrated into the base images. A number of additional applications in digital forensic challenge creation for tool testing and validation, proficiency testing, and malware analysis are also discussed as a result of using EviPlant.Comment: Digital Forensic Research Workshop Europe 201

    Spatial configuration, building microclimate and thermal comfort

    Get PDF
    In this paper, the authors attempt to clarify the relationship between spatial configuration, building microclimate and thermal comfort through the investigation of a modern house in hot and humid climate with spatial diversity. First, the spatial configuration of the house was analysed in detail. The spatial geometric features, spatial boundary conditions, and human activities in the building were categorised. Secondly, field measurements were conducted to investigate the microclimate of the house. The air temperature, relative humidity and wind velocity were monitored on typical summer days. Thirdly, a dynamic thermal simulation was performed to predict the thermal comfort performance of the building over the period of an entire summer. The simulated results were compared with the measurements, and the adaptive thermal comfort approach was used to evaluate the thermal comfort. The modern house studied was found to have a varied spatial configuration, similar to local vernacular buildings, which produces diverse thermal environments in the building. The microclimate of this specific building could provide considerable thermal comfort for the occupants in summer under the local climate conditions, although thermal comfort cannot be achieved through free-running model in the hottest days, mechanical cooling or mixed model are needed

    Space Design for Thermal Comfort and Energy Efficiency in Summer

    Get PDF
    Passive cooling for thermal comfort in summer is a big issue in low-energy building design. An important reason is global warming because global warming increases the number of cooling degree days. In addition, the energy demand of buildings has increased rapidly due to both the improvement of living standards and the globalisation of modern architecture. And finally, cooling a building is especially a challenge in countries where few resources are available. Passive cooling techniques, where solar and heating control systems are applied, largely depend on the design of the urban morphology and the building shape. The first research question is therefore: What is the relationship between spatial configuration, thermal environment and thermal summer comfort of occupants and how to apply spatial configuration as the passive cooling strategy in architectural design? Space is the empty part of a building, but its volume is important for the activities of occupants. Architects define the general spatial structure of a building mainly in the early design stages. There they define the spatial properties of a building, i.e. how the spaces are connected and what are the boundary conditions between the spaces. The final research question of this research therefore is: What is the relationship between spatial configuration, thermal environment and thermal summer comfort and how to apply spatial configuration as passive cooling strategy in architectural design in the early stages? In order to answer this research question, this dissertation is divided into two main parts. Part I is the theoretical research phase. The goal is to clarify the relationship between spatial configuration of buildings, the thermal environment and thermal comfort of occupants in summer. In this part, a literature review of the fundamental theoretical background knowledge of thermal comfort and passive cooling technology is summarised. As the author got his inspiration from Chinese vernacular architecture, the second step was conducting surveys and performing analyses of the spatial design, thermal environment and thermal summer comfort in Chinese vernacular buildings. Contemporary residential buildings were also investigated. A challenge was to find examples of contemporary buildings with appropriate spatial designs and thermal comfort as well as contemporary buildings with less successful spatial designs and thermal comfort. The third step was to find correlations between the occupants’ spatial and thermal perception through questionnaires. Questionnaires were held among Chinese as well as Dutch architecture students. The main research outcome of part I is the definition of “building microclimate”. Building microclimate is defined as “a type of microclimate which involves indoor spaces and spaces surrounding the indoor spaces in a particular building”. It is not just the microclimate around the building; it also includes the indoor climate. A suitable building microclimate is important for the occupants’ thermal comfort in summer. Another research outcome of part I is the revelation of the relationship between spatial perception and adaptive thermal comfort. Combining the relationship between spatial perception and adaptive thermal comfort with the new definition of building microclimate leads to the conclusion that the spatial configuration of a building plays an important role in creating a particular building microclimate. Part II is a practical research phase. The goal is to explore the possibility of using a spatial design method as a passive cooling strategy for thermal summer comfort and to demonstrate how to apply this method in the early design stages. As a first step, the potential of using a space analysis method for passive cooling and thermal comfort was investigated. A convex spatial analysis method was developed from the traditional space syntax method to analyse the natural ventilation potential. Both the logical relationship between the spaces and the boundary conditions between the spaces can influence the accessibility of a particular spatial configuration, and thus influence the potential for natural ventilation. The convex space analysis method is chosen for the preliminary analysis to show the logical relationships between spaces. It cannot completely predict natural ventilation, but it is a graphical method that is easy to use. Architects conceive design solutions generally through graphic methods, making the convex space analysis a good design tool. The extended visibility graph analysis (VGA) method is the best choice for the natural ventilation potential analysis for a spatial configuration. The isovist measure can be used for the natural ventilation potential of a single space. Two case studies were performed to demonstrate the proposed method for architectural design in the early design stages. The main finding of part II is the potential of using spatial indicators to predict the airflow performance of buildings. New applications of the developed space syntax methods are proposed to help architects in designing a contemporary building that is thermally more comfortable and that has a lower energy demand for cooling. This research is performed at the cross disciplines of architectural spatial design, passive cooling and thermal comfort. This research proposes several ideas for the first time. The term “building microclimate’ is one. The application of a spatial design parameter for thermal comfort is another. This research can contribute to the sustainable development of buildings, Chinese ones in particular. It can help design residential buildings for occupants with low and medium incomes by decreasing the necessity of air conditioning and improving the living environment for thermal comfort as well. This research is also valuable for passive or zero-energy design of houses in the Netherlands and the Mediterranean area. This research will enrich the green building science by introducing enhanced space syntax methods for adaptive thermal comfort and for passive cooling by means of spatial design. This thesis is mainly composed of a collection of the author’s published papers

    Spatial configuration evaluation of Chinese rural houses through visual graph analysis for adaptive thermal comfort

    Get PDF
    In chapter 9, it was found that the spatial indicators can reflect the airflow performance. There is a positive or linear correlation between the spatial indicators (connectivity, integration and depth) and the airflow indicator (airflow rate). The indicators that reflect the accessibility of the spatial configuration, i.e. connectivity, integration and depth, reflect the potential of achieving natural ventilation of a particular spatial configuration. In the other words, a high degree of connectivity, integration and low depth value mean a high accessibility of the spatial configuration and a high potential of obtaining natural ventilation. This result is useful for the architectural design practice, especially in the early design stage. In chapter 10, the extended space syntax methods in the program of Depthmap for natural ventilation potential analysis were proposed by the author. In this chapter 11, the proposed methods for spatial analysis will be used for design practice. The spatial configurations of a number of Chinese rural house designs in the area studied will be evaluated in terms of natural ventilation potential for thermal summer comfort by the proposed spatial analysis methods. The rural houses as a case study in this research is chosen because the Chinese rural houses normally using passive ways to achieve thermal comfort in summer, therefore the spatial configuration for natural ventilation is important, as the author concluded in part 1 in this thesis. In addition, the rural population in China accounts for 40% of the total population with a total amount of approximately 560 million at the end of 2018 (NBSC, 2018). At the end of 2014, there were more than 585,451 villages in China and the rural housing area is at present 22.6 billion m², within a total area of more than 40 billion m² of China’s urban and rural housing together. The amount of rural housing is constantly rising. According to 2010 data, the total floor space of newly built houses is 1.6 billion m², and half of them are rural residential buildings (NBSC, 2018). Therefore, improving the living environment for Chinese rural residential buildings is important for the sustainable development of China. Moreover, previous studies have been carried out on the sustainable development of Chinese rural residential building. However, many investigations and studies related to energy conservation and indoor thermal comfort have been proposed for northern China’s rural houses (Jin & Zhou, 2008; Lai, Zhang, Wei, & Zhang, 2011; Sun, 2003; Yang, Yang, Yan, & Liu, 2011; Zhao & Jin, 2007; Zheng, Li, & Yang, 2008), focusing on winter comfort. Studies of the Chinese rural residential building in the hot humid climate regions are scarce (Han, Zhang, & Zhou, 2009; Jin, Meng, Zhao, Zhang, & Chen, 2013; Liu, Tan, Chen, Chu, & Zhang, 2013; Xie & Shi, 2012). Studies of spatial configuration for passive cooling of rural residential building design are very scarce

    A review of thermal comfort

    Get PDF
    Thermal comfort is defined as “that state of mind which expresses satisfaction with the thermal environment” (ANSI/ASHRAE, 2017). The definition of thermal comfort leaves open as to what is meant by condition of mind or satisfaction, but it correctly emphasizes that the judgment of comfort is a cognitive process involving many inputs related to physical, physiological, psychological, and other factors (Lin & Deng, 2008). People are always in an internal or external thermal environment. The human body produces heat and exchanges heat with the external environment. During normal activities these processes result in an average core body temperature of approximately 37 °C (Prek, 2005). This stable core body temperature is essential for our health and well-being. Our thermal interaction with the environment is directed towards maintaining this stability in a process called “thermoregulation” (Nicol, Humphreys, & Roaf, 2012). Thermal comfort plays an important role in the energy consumption of buildings. So, researchers spent decades to find the appropriate approaches and models which evaluate and predict thermal comfort. A literature review of the current knowledge on thermal comfort shows two different approaches for thermal comfort, each one with its potentialities and limits: the heat-balance model and the adaptive model (Doherty & Arens, 1988). The heat-balance approach is based on analysis of the heat flows in and around the body and resulted in a model based on physics and physiology. Data from climate chamber studies was used to support this model. The best wellknown heat-balance models are the predicted mean vote (PMV) (Fanger, 1970) and the standard effective temperature (SET) (Gagge, Fobelets, & Berglund, 1986). The PMV model is particularly important because it forms the basis for most national and international comfort standards. The adaptive approach is based on field surveys of people’s response to the environment, using statistical analysis and leads to an “empirical” model (Nicol et al., 2012)

    Output of part I:

    Get PDF
    In part 1, a literature review was done to summarise and introduce the theoretical background knowledge of thermal comfort and passive cooling technology. The adaptive thermal comfort was explained because it is applicable to a free-running building which is the studied object of this research. The basic theory and design standards of adaptive thermal comfort were reviewed. A brief overview of passive cooling techniques was given. The techniques were then reviewed based on their relationships with urban morphology, building shape, layout, opening and “elements”. The study started with a Chinese vernacular building (chapter 4) because these always use the passive way to achieve a comfortable living environment under the limitations of technology at that time. Firstly, the spatial design strategies for passive cooling of a Chinese vernacular house were investigated in a field survey. The design of modern rural houses under free-running conditions compared with the Chinese vernacular house. It was found that the modern rural house did not achieve a satisfactory thermal summer environment under free-running conditions, while the vernacular house did. Furthermore, the vernacular house was deeply analysed by field measurements and dynamic thermal simulations. It was found that the particular spatial design of the vernacular house has its own building microclimate, which is important for the occupants’ thermal summer comfort. The concept of building microclimate was identified. In this study, the scale of “building microclimate” refers to a type of microclimate, involving the indoor space and the spaces around the indoor spaces of a particular building. It is the extension of the indoor climate. The spatial scale is smaller than the urban fabric. It rarely covers an area more than several hundred meters wide, but is bigger than an indoor space alone. It is limited to one particular building, whether a small house or a big stadium. The building microclimate is mainly defined by the spatial and the thermo-physical properties. Similar to the influence of urban morphology on urban microclimate, the spatial configuration influences the building microclimate significantly. To have a particular microclimate at the building scale, some key factors of spatial configuration such as spatial diversity, spatial arrangement and boundary conditions between spaces should be identified. The spatial design of modern house is different from the vernacular house due to the evolution of people’s lifestyle over a long period. Can a modern house have a good building microclimate? To answer this question, the spatial design and thermal environment of a modern house were analysed through field survey and simulation. It was found that a modern house can also have its own microclimate and that the microclimate of this particular building can provide considerable thermal comfort for the occupants in summer under local climate conditions. Adaptive actions, for example movement, can explain why occupants can achieve thermal comfort in a building microclimate with diverse spaces. To find the relationship between the occupants’ spatial perception and thermal perception, a questionnaire was put forward. It was found that the spatial openness of a particular space significantly affects the occupants’ visual perception, wind speed perception and thermal perception. It was revealed that the occupants’ spatial perception and thermal perception are associated. The strongest correlation is between spatial openness and visual perception and wind speed perception. That means spatial boundary conditions can strongly influence occupants’ comfort perception, and subsequently influence the occupants’ spatial choice and movement in a particular thermal environment, given the opportunity, as Humphreys (1997) pointed out: when people are free to choose their location, it helps if there is plenty of thermal variety, giving them the opportunity to choose the places they like. The fundamental assumption of the adaptive approach is expressed by the adaptive principle: “if a change occurs such as to produce discomfort, people react in ways which tend to restore their comfort”. Nicol et al. (2012) proposed that there are at least five basic types of adaptive actions. One important adaptive action is selecting a different thermal environment. Occupant movement in a particular building microclimate is significant for thermal comfort. Occupants can change their location for different activities. Movement is possible between buildings, between rooms, around rooms, out of the sun and into the breeze, and so on (Nicol et al., 2012)

    Conclusion

    Get PDF
    The main objective of this dissertation is to find the main factors of building spatial configuration that affecting the thermal summer environment, the possibility of occupants to achieve thermal comfort there in, and to propose a spatial design method as the passive cooling strategy for summer thermal comfort. In accordance with the objective, the research questions were put forward in section 1.5 of chapter 1. For every sub-question, there is a respective chapter to answer it, see figure 1.3 in section 1.6 of chapter 1. In chapter 8, some conclusions of part I of this dissertation were summarised. In this chapter, the research questions are answered. In addition, the limitation of this research and recommendations for future practice and research will be mentioned as well

    Space Design for Thermal Comfort and Energy Efficiency in Summer:

    Get PDF
    Passive cooling for thermal comfort in summer is a big issue in low-energy building design. An important reason is global warming because global warming increases the number of cooling degree days. In addition, the energy demand of buildings has increased rapidly due to both the improvement of living standards and the globalisation of modern architecture. And finally, cooling a building is especially a challenge in countries where few resources are available. Passive cooling techniques, where solar and heating control systems are applied, largely depend on the design of the urban morphology and the building shape. The first research question is therefore: What is the relationship between spatial configuration, thermal environment and thermal summer comfort of occupants and how to apply spatial configuration as the passive cooling strategy in architectural design? Space is the empty part of a building, but its volume is important for the activities of occupants. Architects define the general spatial structure of a building mainly in the early design stages. There they define the spatial properties of a building, i.e. how the spaces are connected and what are the boundary conditions between the spaces. The final research question of this research therefore is: What is the relationship between spatial configuration, thermal environment and thermal summer comfort and how to apply spatial configuration as passive cooling strategy in architectural design in the early stages? In order to answer this research question, this dissertation is divided into two main parts. Part I is the theoretical research phase. The goal is to clarify the relationship between spatial configuration of buildings, the thermal environment and thermal comfort of occupants in summer. In this part, a literature review of the fundamental theoretical background knowledge of thermal comfort and passive cooling technology is summarised. As the author got his inspiration from Chinese vernacular architecture, the second step was conducting surveys and performing analyses of the spatial design, thermal environment and thermal summer comfort in Chinese vernacular buildings. Contemporary residential buildings were also investigated. A challenge was to find examples of contemporary buildings with appropriate spatial designs and thermal comfort as well as contemporary buildings with less successful spatial designs and thermal comfort. The third step was to find correlations between the occupants’ spatial and thermal perception through questionnaires. Questionnaires were held among Chinese as well as Dutch architecture students. The main research outcome of part I is the definition of “building microclimate”. Building microclimate is defined as “a type of microclimate which involves indoor spaces and spaces surrounding the indoor spaces in a particular building”. It is not just the microclimate around the building; it also includes the indoor climate. A suitable building microclimate is important for the occupants’ thermal comfort in summer. Another research outcome of part I is the revelation of the relationship between spatial perception and adaptive thermal comfort. Combining the relationship between spatial perception and adaptive thermal comfort with the new definition of building microclimate leads to the conclusion that the spatial configuration of a building plays an important role in creating a particular building microclimate. Part II is a practical research phase. The goal is to explore the possibility of using a spatial design method as a passive cooling strategy for thermal summer comfort and to demonstrate how to apply this method in the early design stages. As a first step, the potential of using a space analysis method for passive cooling and thermal comfort was investigated. A convex spatial analysis method was developed from the traditional space syntax method to analyse the natural ventilation potential. Both the logical relationship between the spaces and the boundary conditions between the spaces can influence the accessibility of a particular spatial configuration, and thus influence the potential for natural ventilation. The convex space analysis method is chosen for the preliminary analysis to show the logical relationships between spaces. It cannot completely predict natural ventilation, but it is a graphical method that is easy to use. Architects conceive design solutions generally through graphic methods, making the convex space analysis a good design tool. The extended visibility graph analysis (VGA) method is the best choice for the natural ventilation potential analysis for a spatial configuration. The isovist measure can be used for the natural ventilation potential of a single space. Two case studies were performed to demonstrate the proposed method for architectural design in the early design stages. The main finding of part II is the potential of using spatial indicators to predict the airflow performance of buildings. New applications of the developed space syntax methods are proposed to help architects in designing a contemporary building that is thermally more comfortable and that has a lower energy demand for cooling. This research is performed at the cross disciplines of architectural spatial design, passive cooling and thermal comfort. This research proposes several ideas for the first time. The term “building microclimate’ is one. The application of a spatial design parameter for thermal comfort is another. This research can contribute to the sustainable development of buildings, Chinese ones in particular. It can help design residential buildings for occupants with low and medium incomes by decreasing the necessity of air conditioning and improving the living environment for thermal comfort as well. This research is also valuable for passive or zero-energy design of houses in the Netherlands and the Mediterranean area. This research will enrich the green building science by introducing enhanced space syntax methods for adaptive thermal comfort and for passive cooling by means of spatial design. This thesis is mainly composed of a collection of the author’s published papers

    Methods of spatial analysis for natural ventilation potential

    Get PDF
    The basic theory of space syntax was described in section 2 of chapter 9. Some methods have been developed from the theory of spatial analysis to explore the spatial structure of buildings and cities. The DepthmapX-one graph-based representations and measures program (Turner, 2001) is one of the most important platforms for space syntax analysis. Convex and axial analysis, isovist and VGA analysis, as well as segment analysis are the methods involved in this programme (Al_Sayed, Turner, Hillier, Iida, & Penn, 2014). The axial and segment analysis are more suitable for the analysis at the urban scale. The convex analysis is suitable for the building scale and isovist and VGA analysis are suitable for both urban and building scale. Many cases have been studied to reveal the topological relationship between the spaces which is related to the social behaviour of human in building or urban scale via DepthmapX. In this chapter, the traditional space syntax methods for building spatial analysis used in the Depthmap were discussed firstly. Then, the author shows how to extended the traditional methods for natural ventilation potential analysis.&nbsp

    Can thermal perception in a building be predicted by the perceived spatial openness of a building in a hot and humid climate?

    Get PDF
    The authors wanted to prove that there is a large correlation between the concepts spatial openness and comfort (visual, wind speed and thermal) perception in people’s minds in a hot and humid climate in summer in order to be able to use spatial configuration parameters such as openness, connectivity and depth as a design tool for a comfortable an energy efficient building in the early design stages. 513 local Chinese college architecture students in 2015 were questioned about the relationship between spatial openness and comfort perception. The main findings for a hot and humid climate are: a. spatial openness of a particular space significantly effects occupants’ visual perception, wind speed perception and thermal perception in a particular space (p < .05). b. There is a strong effect size between spatial openness and visual and wind perception (w = .50 and .54); the effect size of the thermal perception is weaker (w = .14). c. The comfort perception is strongly influenced by the time of day, therefore visual perception, wind perception and thermal perception can influence occupant movement between different spaces as is the advice of the adaptive thermal comfort
    • …
    corecore